Optical track width measurements below 100 nm using artificial neural networks
نویسندگان
چکیده
This paper discusses the feasibility of using artificial neural networks (ANNs), together with a high precision scanning optical profiler, to measure very fine track widths that are considerably below the conventional diffraction limit of a conventional optical microscope. The ANN is trained using optical profiles obtained from tracks of known widths, the network is then assessed by applying it to test profiles. The optical profiler is an ultra-stable common path scanning interferometer, which provides extremely precise surface measurements. Preliminary results, obtained with a 0.3 NA objective lens and a laser wavelength of 633 nm, show that the system is capable of measuring a 50 nm track width, with a standard deviation less than 4 nm.
منابع مشابه
Optical Measurement of Ultra Fine Linewidths Using Artificial Neural Networks
Measuring fine track widths with optical instruments has become increasingly difficult as the dimensions of the features of interest have become smaller than the traditional optical resolution limit. This has caused a move to non-optical methods such as scanning electron and atomic force microscopy techniques, or novel optical methods combined with signal processing techniques to provide measur...
متن کاملComparison of the Experimental and Predicted Data for Thermal Conductivity of Fe3O4/water Nanofluid Using Artificial Neural Networks
Objective(s): This study aims to evaluate and predict the thermal conductivity of iron oxide nanofluid at different temperatures and volume fractions by artificial neural network (ANN) and correlation using experimental data. Methods: Two-layer perceptron feedforward artificial neural network and backpropagation Levenberg-Marquardt (BP-LM) tra...
متن کاملArtificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...
متن کاملArtificial Neural Networks (ANN) for the simultaneous spectrophotometric determination of fluoxetine and sertraline in pharmaceutical formulations and biological fluid
Simultaneous spectrophotometric estimation of Fluoxetine and Sertraline in tablets were performed using UV–Vis spectroscopic and Artificial Neural Networks (ANN). Absorption spectra of two components were recorded in 200–300 (nm) wavelengths region with an interval of 1 nm. The calibration models were thoroughly evaluated at several concentration levels using the spectra of synthetic binary mix...
متن کاملUsing Artificial Neural Networks to Predict Rolling Force and Real Exit Thickness of Steel Strips
There is a complicated relation between cold flat rolling parameters such as effective input parameters of cold rolling, output cold rolling force and exit thickness of strips. In many mathematical models, the effect of some cold rolling parameters has been ignored and the outputs have not a desirable accuracy. In the other hand, there is a special relation among input thickness of strips, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005